
 

 1 January 17, 2003

 

Using NetLogger and Web100 for TCP Analysis 

 

Brian L. Tierney
Lawrence Berkeley National Laboratory

 

1.0  Introduction

 

Scaling TCP to very large bandwidth-delay product networks has proven to be very challenging.
When diagnosing TCP behavior in these environments, we have found that monitoring various TCP
parameters and visually correlating them with host and application information is a very effective analysis
technique. In this paper we show how this technique can be implemented with a combination of the
Web100 TCP instrumentation capabilities and the NetLogger analysis tools.

Web100 is an implementation of an IETF Internet Draft TCP MIB [6] which allows for low-level
instrumentation of the TCP stack within the Linux operating system. The NetLogger Toolkit is a set of
tools that provide the ability to visually correlate monitoring data from a variety of sources, such as hosts,
operating systems, and applications. The Net100 project has enhanced Web100 with a monitoring and tun-
ing daemon that allows the monitoring of any TCP socket. In this paper, we describe all these components,
and then provide several examples of how they can be used together to analyze TCP behavior. 

 

The goal of
this paper is not to actually analyze TCP, but rather to show how the combination of web100 and NetLog-
ger create a powerful analysis technique.

 

2.0  NetLogger Toolkit

 

Since 1994 researchers at Lawrence Berkeley National Lab have been developing a toolkit for instru-
menting distributed applications called NetLogger [8]. Using NetLogger, distributed application compo-
nents are modified to produce timestamped traces of interesting  events at all critical points of the
distributed system. Events from each component are correlated, allowing one to characterize the perfor-
mance of all aspects of the system and network in detail.

All the tools in the NetLogger Toolkit share a common monitoring event format, and assume the
existence of accurate and synchronized system clocks. The NetLogger Toolkit itself consists of four com-
ponents: an API and library of functions to simplify the generation of application-level event logs, a ser-
vice to collect and merge monitoring from multiple remote sources, a monitoring event archive system,
and a tool for visualization and analysis of the log files. In order to instrument an application to produce
event logs, the application developer inserts calls to the NetLogger API at all critical points in the code,
then links the application with the NetLogger library. 

NetLogger events can be formatted as an easy to read and parse ASCII format, or as a self-describing
binary format. The NetLogger binary wire format is very efficient, capable of handling over 600,000
events per second [3]. NetLogger also includes a remote activation mechanism, and reliability support. 

The NetLogger Reliability API provides fault-tolerance features that are essential in Grid environ-
ments. For distributed monitoring, a particular challenge is that temporary failures of the network between
the component being monitored and the component collecting the monitoring data are relatively common,
especially when several sites are involved. The NetLogger API included the ability to specify a backup ,
i.e. fail-over, destination to use. This may be any valid NetLogger destination, but typically is a file on
local disk. If the primary destination fails, all data is transparently logged to the backup destination. Peri-
odically, the library checks whether the original destination has come back up . If so, the library recon-
nects and, if the backup destination was a file, sends over all the data logged during the failure.



 

 2 January 17, 2003

 

The NetLogger Toolkit also
includes a data analysis component.
One of the major contributions of Net-
Logger was the concept of linking a
set of events together and representing
them visually as a lifeline , as shown
in Figure 1. Visualizing event traces in
this manner makes it easy to deter-
mine where the most time is spent. 

The NetLogger Visualization
tool, 

 

NLV

 

, provides an interactive
graphical representation of sys-
tem-level and application-level
events. NetLogger s ability to corre-
late detailed application instrumenta-
tion data with host and network monitoring data has proven to be a very useful tuning and debugging
technique for distributed application developers. 

As an example, see Figure 2. For this figure, we used the NetLogger visualization tool, 

 

NLV

 

, to corre-
late client and server instrumentation data with CPU and TCP retransmission monitoring data. The events
being monitored are shown on the y-axis, and time is on the x-axis. From bottom to top, one can see CPU
utilization events (lines 1-3), application events, and TCP retransmit events all on the same graph. Each
semi-vertical line represents the life  of one block of data as it moves through the application. The gap in
the middle of the graph, where only one set of header and data blocks are transferred in three seconds, cor-
relates exactly with a set of TCP retransmit events. Thus, this plot makes it easy to see that the pause  in
the transfer is due to TCP retransmission errors on the network. The 

 

NLV

 

 interface allows the user to play,
pause, step forward and backward, zoom in and out, select and unselect groups of data, and so on.

 

3.0  Web100

 

The Web100 project [9] is an NSF funded collaboration between the Pittsburgh Supercomputing Cen-
ter (PSC), the National Center for Atmospheric Research (NCAR) and The National Center for Supercom-
puting Applications (NCSA). The Web100 vision is to enable users running ordinary applications on
typical workstations to either saturate a workstation bottleneck or completely fill a network link. In other
words, the goal is to make it easy for ordinary users to tune TCP to get the most out of their available
resources.

To achieve this goal, Web100 exposes the statistics inside the TCP stack itself through an enhanced
standard Management Information Base  (MIB) for TCP [6]. This MIB uses TCP s ideal vantage point to
provide statistics for diagnosing performance problems in both the network and the application. If a net-
work-based application is performing poorly, TCP information from Web100 allows us to determine if the
bottleneck is in the sender, the receiver, or the network itself. If the bottleneck is in the network, TCP can
provide specific information about its nature. 

The current Web100 implementation is based on extensions and modifications to the Linux 2.4 ker-
nel. Web100 variables are contained in a data structure attached to the kernel s socket data structure. An
application reads and sets the Web100 variables using the Linux 

 

/proc 

 

interface using an API provided in
the Web100 distribution. TCP connection start and end events are provided to an application (e.g., a tuning
daemon) through the 

 

netlink 

 

service.

Time

S
er

ve
r 

E
ve

nt
s

Request Data Block

Start Disk Read

End Disk Read

End Processing

Begin Processing

Begin Network Write 

End Network Write 

Begin Network Read  

End Network Read  

C
lie

nt
E

ve
nt

s

Figure 1:  NetLogger Lifelines



 

 3 January 17, 2003

 

4.0  Work-Around Daemon (WAD)

 

We have developed a monitoring and tuning daemon for the Web100 kernel called the Work-Around
Daemon, or WAD. The name comes from the WAD s original goal, which was to use Web100 tuning
mechanisms to work around  problems with TCP flows in a particular network or application. For more
information on the WAD tuning options, see [1]. In this paper we are using the WAD in a read-only
mode for monitoring TCP, not for TCP tuning. 

The WAD first detects a TCP connection by listening on the Web100 

 

netlink socket 

 

-- a communica-
tion mechanism used for kernel notifications to user space. The daemon then consults a configuration file
that specifies which flows (source, source port, destination, destination port) are of interest. When the
WAD is used for tuning a connection, the configuration entry for a tunable flow also includes a set of tun-
ing parameters such as maximum ssthresh, AIMD parameters, reordering threshold, and so on. 

In addition to TCP tuning, the WAD can monitor any Web100 variable for any TCP flow. For exam-
ple, the WAD can measure the congestion window, packet retransmissions, timeouts, and smoothed RTT
times of any socket directly from Web100 variables. The WAD can also be configured to generate 

 

derived
events 

 

from combinations of Web100 variables. For example, one could generate average and instanta-
neous bandwidth as follows:

 

AveBW = (DataBytesOut*8)/(CurrTime - StartTime)

Figure 2:  NetLogger Visualization



 

 4 January 17, 2003

 

LastIntervalBW = (Delta_DataBytesOut*8)/ (Delta_SndLimTimeRwin + 
Delta_SndLimTimeCwnd + Delta_SndLimTimeSender)

 

The WAD can write any subset of the derived and raw variable values as NetLogger events, and send
these events to the NetLogger visualization tool, 

 

NLV

 

, for visual analysis of TCP streams.

 

5.0  Results

 

Figure 3 shows a graph of several Web100 variables along with CPU utilization and instrumented

 

iperf

 

 events. Web100 counters are collected every 0.3 seconds using the WAD. CPU utilization data is col-
lected every second (cpu.utilization.user and cpu.utilization.sys), and 

 

iperf 

 

has been instrumented with
NetLogger to generate monitoring events before and after all I/O operations (StartRead/EndRead in the
iperf server, and StartWrite/EndWrite in the iperf client). The numbers on the right side of the plot are the
range of values for that monitoring event, and the numbers without units are a count of the number of times
an event occured.

There is an immense amount of information in this plot, which we will attempt to explain. From bot-
tom to top:

 

•

 

CPU user and system load information: the two colors represent the sender and receiver host. Note 
that system CPU increases when CurrCWND is large

 

•

 

StartWrite and EndWrite are from the 

 

iperf

 

 client, and represent the time to write a 512 KByte block 
from user space to kernel space

 

•

 

StartRead and EndRead are from the 

 

iperf

 

 server, and represent the time to read a 512 KByte block 
from kernel space to user space. Note that the client writes are much more bursty than the server 
reads.

 

•

 

IntBW: a WAD computed value of the bandwidth achieved since the last measurement (0.3 seconds)

 

•

 

SndLimTimeCwnd, SndLimTimeRwin, and SndLimTimeSender: These are web100 

 

sender con-
gestion triage

 

 variables that help determine whether the sender, receiver, or the network is the bot-
tleneck

 

•

 

CongestionSignals: Web100 sum of all types of congestion events, including Fast Retransmit, ECN, 
and timeouts.

Time (seconds)
Figure 3:  TCP analysis correlated with CPU and application monitoring



 

 5 January 17, 2003

 

•

 

OtherReductions: Other than during congestion, there are a two other situations where the Linux 2.4 
TCP implementation reduces the congestion window. The first is that Linux implements RFC2861 
(TCP Congestion Window Validation) [5], which reduces CWND after an extended idle period. The 
other case is that Linux calls a routine called 

 

tcp_moderate_cwnd

 

, which reduces CWND whenever 
it thinks there are more packets in flight  than there should be based on CWND. This algorithm 
appears to be specific to Linux, and based on no known IETF document. Note that since there are no 
other congestion signals recorded for this run, OtherReductions are clearly the cause of CWND 
being reduced. 

 

•

 

CurCwnd: current TCP congestion windowMaxRwinRcvd: This is the maximum TCP window size 
that the receiver is telling the sender it can use.

 

•

 

CurRTO: current value of the TCP RTO (Retransmission Timer) measurement, used to determine 
when a TCP time-out should occur.

 

•

 

SmoothedRTT: TCP s internal notion of the round-trip time.

 

•

 

bw.TCP: average bandwidth since the start of the test, as reported by 

 

iperf

 

.

Note that the WAD records both value  (current value) and delta  (difference from the previous
value) for each event. With NLV, you can specify which you wish to graph. For some events (e.g.: Conges-
tionSignals) it is better to graph the deltas, but with other events (e.g.: CurCWND) you want to see a trace
of the current values.

The careful observer may have noticed that CWND appears to recover from congestion faster than
standard TCP would allow. This is because for this test we were using an implementation [1] of Sally
Floyd s High-Speed TCP algorithm [2], which more aggressively recovers from congestion events when
the congestion window is large.

In summary, from Figure 3 one can see that the maximum bandwidth peaked around 660 Mbps
(IntBW), but that the average was only around 200 Mbps. This was due to the fact that CWND was contin-
uously reduced by whatever was causing the OtherReductions to occur, likely the 

 

tcp_moderate_cwnd

 

 rou-
tine. The implementors of web100 have said that the next version will have separate counters for the two
types of OtherReductions, which will allow us to know with certainty which case is happening here.

 

Another Example

 

Next we look at some data that demonstrates an interesting bug in the Linux TCP stack. Figure 4
shows a rather serious bug in Linux that occurs when the TCP buffers are too large. The path in this graph
requires 10 MB TCP buffers to fill the network, but here the user set the TCP buffer to 20 MB. Under these
circumstances, something happens when the TCP congestion window (CWND) gets too large. As can be
seen in the figure, after about one minute the system CPU utilization rises to 100% and the throughput
drops to almost zero. In addition, there is a congestion event at this time.

Figure 5 shows a zoomed-in view of the same graph and an 

 

NLV

 

 annotation  window, showing the
raw data. In this view, we can see that after the congestion event CWND is clamped at 4344 bytes (see
VAL=4344.0 in the annotation window), where it will stay for the remainder of the session. Also note that
the WAD stopped generating events for about 1.2 seconds at this time, probably because the CPU was too
busy servicing interrupts. Several groups of people are now aware of this bug, so the bug will likely be
fixed by the time you read this. 



 

 6 January 17, 2003

spike in CPU

CWND never increases

Figure 4:  Web100 view of Linux TCP bug

stopped getting 
WAD events

Figure 5:  Zoomed View showing clamped CWND



 

 7 January 17, 2003

 

6.0  Related Work

 

The Web100 

 

gutil

 

 program [4] provides a nice mechanism for exploring web100 variables for a
selected TCP stream. Tcptrace [7] is very good for visually exploring tcpdump files. However, as the
results above show, the ability to correlate this information with CPU monitoring is very helpful. Addition-
ally, the flexibility of the 

 

NLV

 

 tool makes it easy to incorporate new kinds of monitoring data. 

 

7.0  Conclusion

 

The ability to visually analyze TCP flows and correlate their behavior with application and CPU mon-
itoring has proven to be very effective mechanism for understanding and debugging TCP over very large
bandwidth-delay product networks. In particular, the ability to track the size of the TCP congestion win-
dow over time, along with the various factors that influence CWND such as 

 

congestionSignals

 

 or 

 

otherRe-
ductions

 

 is extremely useful for understanding TCP s behavior over high-speed links. The combination of
Web100 and NetLogger provide everything needed to perform this type of analysis.

 

8.0  Acknowledgments

 

This work was supported by the Director, Office of Science. Office of Advanced Scientific Comput-
ing Research. Mathematical, Information, and Computational Sciences Division under U.S. Department of
Energy Contract No. DE-AC03-76SF00098. This is report no. LBNL-51776.

 

9.0  References

 

[1] Dunigan, T., M. Mathis and B. Tierney, 

 

A TCP Tuning Daemon

 

, Proceeding of IEEE Supercomputing 2002
Conference, Nov. 2002, LBNL-51022. 

[2] Floyd, Sally, 

 

HighSpeed TCP for Large Congestion Windows

 

, IETF Internet Draft, http://www.ietf.org/inter-
net-drafts/draft-floyd-tcp-highspeed-01.txt

[3] Gunter, D., et. al. 

 

Dynamic Monitoring of High-Performance Distributed Applications

 

. in 11th IEEE Sympo-
sium on High Performance Distributed Computing. 2002.

[4]

 

gutil

 

, http://www.web100.org/docs/man/gutil.html

[5] Handley, M., J. Padhye, S. Floyd, 

 

TCP Congestion Window Validation,

 

 June 2000,
http://www.ietf.org/rfc/rfc2861.txt

[6] M. Mathis, M., R. Reddy, J. Heffner, and J. Saperia. 

 

TCP Extended Statistics MIB

 

. IETF draft, work in
progress, November 2002. URL: http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-tcp-mib-extension-02.txt.

[7]

 

tcptrace

 

: http://www.tcptrace.org/

[8] Tierney, B., et al. 

 

The NetLogger Methodology for High Performance Distributed Systems Performance Anal-
ysis

 

. in Proc. 7th IEEE Symp. on High Performance Distributed Computing. 1998.

[9]

 

web100

 

 project: http://www.web100.org/


