How To Set up QoS in Gigabit Networks

1 Introduction

The service we want to enforce is a minimum bandwidth guarantee to a class of traffic under port congestion and a drop probability profile.

This is a layer-3 provisioning of QoS since a per-class processing is performed and a class is defined by the value of the DSCP (Differentiated Services Code Point) field in the IP packet header.

2 Platform independent configuration steps

Three main steps at most are needed in order to successfully configure the service outlined in the introduction.

1. Classification (class definition)

This bit of configuration allows the router to associate all packets having the same “dscp” to a specific class. Packets entering the router are already marked.

2. Per class minimum BW guaranteed and drop profile enforcement

This bit of configuration allows the router bandwidth scheduler to enforce a minimum BW guarantee out of an interface capacity and to enforce a queue drop profile
 to any of the classes previously defined. This builds a certain “behaviour” for the router.

3. Port binding

This bit of configuration allows a configured behaviour for the router to be associated to the traffic flowing through a specific router port.

3 Cisco

The configuration presented applies to the following cards in the Cisco 7600 platform

· POS OC-48 v2 to whom Cisco refers to as OSM-1OC48-POS-SS+. The encapsulation used is PPP.

· GE-WAN v2 to whom Cisco refers to as OSM-2+4GE-WAN+.

The supervisor engine is the Catalyst 6000 supervisor 2 and its model is the WS-X6K-S2U-MSFC2.

It’s worth noticing that Cisco designed an “engineering code” specific for the scheduler of this card and included it on the major release 12.1(19)E which has been available since May/03

3.1 OC-48 and 1GE Configuration

The recommended configuration for a 2-class case follows below:

!

A two-class classifier is defined based on the dscp value. This is issued in the global configuration mode, therefore applying to traffic entering from any router port.

!

!

class-map match-any class1_name
 match ip dscp class1_dscsp
class-map match-any class2_name
 match ip dscp class2_dscp
!

!

The scheduler configuration is defined by the use of a template called “policy map”.

X and Y are the minimum BW guaranteed to each class and they must be expressed in terms of percentage of the capacity of the port to which the BW scheduler will be applied.

As regards to the WRED configuration, it is WRED at the class level and not at the interface level and the values min, Max e probDen are the minimum, the maximum and the drop probability denominator respectively.
!

policy-map policy_map_name
 class class1_name
 bandwidth percent X

 random-detect dscp-based

 random-detect dscp min1 Max1 probDen1

 class class2_name
 bandwidth percent Y

 random-detect dscp-based

 random-detect dscp min2 Max2 probDen2

!

mls qos

!

interface input_interface_name
mls qos trust dscp

!

!

The scheduler is attached to the output port and is active for the traffic leaving the router (output) by the mean of a template called “service-policy” containing the already defined “policy map” template.

!

interface output_interface_name

service-policy output policy_map_name

mls qos trust dscp

!

The command lines “mls qos” deserve a paragraph on its own.

The command line “mls qos” in the global configuration mode is needed to enable QoS on the supervisor engine while “mls qos trust dscp” issued in the input and output interfaces is there to avoid cards to reset the dscp code of packets entering or leaving the interfaces. This configuration line is of particular importance if Catalyst cards are used in the input (not in the output as they don’t support L3 CBWFQ) as they naturally tend to reset to 0 the dscp code. This happens since the legacy L2 COS-based QoS is the default QoS for the catalyst ports as the 7600 is a router built on top of the native Catalyst switch.

Cisco “Modular Quality of Service Command” (MQC) for both OC-48 and GE-WAN can be used. This is of particular importance when configuring QoS on Cisco cards/routers implementing BW allocation through different algorithms such as CB-WFQ and MDRR (the latter being implemented in Cisco 12000 platforms) as MQC leaves such BW scheduler implementations aside.

The max of the sum of X and Y present in the configuration above cannot be 100% as 1% is always there to host routing updates and network control traffic in general. Therefore (X+Y) <= 99%. The difference |100-(X+Y)| is what is called “spare” in the error analysis paragraph.

As an architectural note, Parallel Express Forwarding (PXF) is present on each OSM (Optical Service Module) or card and is capable of CBWFQ, thus permitting the QoS processing directly on the card.

Some useful QoS monitoring commands follow below:

Show policy-map interface <interface_name> <input/output>

4 Juniper

The configuration shown below applies to the following cards in the Juniper M10 router platform:

· POS OC-48 with Juniper referring to it as “1xSTM-16 SDH, SMSR REV 05”

· 1GE with Juniper referring to it as 1x G/E, 1000 BASE-SX REV 01

The IOS used was “Junos 5.3R2.4”
4.1 OC-48 and 1GE Configuration

The recommended configuration for a 2-class case follows below.

!

A two-class classifier is defined based on the dscp code of the traffic coming in.

!

class-of-service {

 classifiers {

 dscp classifier_name {

 forwarding-class class1 {

 loss-priority low code-points class1_dscp;

 }

 forwarding-class class2 {

 loss-priority low code-points class2_dscp;
 }

 }

 }

!

A 4-stepped wred drop profile is defined below. The “fill levels” (expressed in terms of the queue occupancy percentage) and the “drop probability” values both range from 0 to 100. There is a maximum of 64 entries for each class profile.

!

 drop-profiles {

 Class1_profile {

 fill-level 1a drop-probability p1a;

 fill-level 1b drop-probability p1b;

 fill-level 1c drop-probability p1c;

 fill-level 1d drop-probability p1d;

 }

 Class2_profile {

 fill-level 2a drop-probability p2a;

 fill-level 2b drop-probability p2b;

 fill-level 2c drop-probability p2c;

 fill-level 2d drop-probability p2d;

 }

}

!

The two classes are assigned two separate queues.

!

 forwarding-classes {

 queue 2 class2;

 queue 0 class1;

 }

!

The classifier is attached to the input interface

!

 interfaces {

 input_port_name {

 unit 0 {

 classifiers {

 dscp classifier_name;

 }

 }

 }

!
The scheduler-map containing the sub-scheduler per each class is attached to the output interface (the classifier is attached to it as well but it is redundant)

!

 output_port_name {

 scheduler-map scheduler_map_name;

 unit 0 {

 classifiers {

 dscp classifier_name;

 }

 }

 }

!

The scheduler-map is defined. It contains a “sub-scheduler” per each class defined.

!

 scheduler-maps {

 scheduler_map_name {

 forwarding-class class2_name scheduler class2_scheduler_name;

 forwarding-class class1_name scheduler class1_scheduler_name ;

 }

 }

!

The “sub-schedulers” are defined in terms of amount of BW allocated to each class and in terms of the drop profile to be applied.

!

 schedulers {

 class1_scheduler_name {

 transmit-rate percent X;

 buffer-size percent X;

 priority high;

 drop-profile-map loss-priority low protocol any drop-profile Class1_profile;

 }

 class2_scheduler_name {

 transmit-rate percent Y;

 buffer-size percent Y;

 priority low;

 drop-profile-map loss-priority low protocol any drop-profile Class2_profile;

 }

 }

}

It’s worth noticing that any command line of the above configuration has to be issued after either the command “edit” or “set”. In particular, “edit” allows the navigation through the configuration while set permit to enforce a specific realization of a parameter.

The main difference with Cisco is that the classifier configuration has to be applied to the (input) interfaces rather than being active in global mode which makes it active on all the interfaces.

Juniper has a priority queuing mechanism which is not a strict priority mechanism.

The queue weight ensures the queue is provided a given minimum amount of bandwidth which is proportional to the weight. As long as this minimum has not been served, the queue is said to have a “positive credit”. Once this minimum amount is reached, the queue has a “negative credit”.

A queue can have either a “high” or a “low” priority. A queue having a “high” priority will be served before any queue having a “low” priority.

For each packet, the WRR algorithm strictly follows this queue service order:

1. High priority, positive credit queues;

2. Low priority, positive credit queues;

3. High priority, negative credit queues;

4. Low priority, negative credit queues.

The following explanation tries to clarify the WRR mechanism.

The positive credit ensures that a given queue is provided a minimum bandwidth according to the configured weight (for both high and low priority queue). On the other hand, negative credit queues are served only if one positive credit queue has not used its whole dedicated bandwidth and no more packets are present in a “positive credited” queue.

The leftover bandwidth (from the positive credited queues) is fairly shared between all the “high priority negative credit” queues until these ones become empty. If the high priority negative credit queues are empty and if there is still some available bandwidth that can be allocated to packets, the “low priority negative credit” queues will equally share it.

The credits are decreased immediately when a packet is sent. They are increased frequently.

The last thing to mention is that the "maximum-buffer-delay percent x" command does NOT associate a buffer length to a queue. RED has to be used if such association has to be enforced.

It is worth noticing that the best QoS configuration expects low priority (“priority low”) for the class which is allocated less BW and vice versa high priority (“priority high”) to the class which is allocated more BW. This is necessary for Juniper in order to precisely allocate a class (BE in our case) the minimum guaranteed BW even when this is very small (<5%).

This is something which only applies to the way Juniper implements the scheduler and it is not therefore a reasoning of general validity.

It is important to say that the “side-effect” of this command line entry would also be that of entirely assigning any non-allocated minimum BW to the higher priority class when the interface is congested and both classes are over-subscribed. But this situation didn’t actually happened during the test as no spare capacity (“spare”= 0) was left since Juniper is the only manufacturer out of the three of them that makes possible to reserve up to 100% of the port capacity.

(*) the wred configuration has also the option of linearly interpolating the discrete values entered instead of stepping between them. This allows having a much more smoothed profile, a sample of which is shown below:

 drop-profiles {

 Class1_profile

 {

 interpolate {

 fill-level [1a 1b 1c 1d];

 drop-probability [p1a p1b p1c p1d];

 }

 }

 Class2_profile
 {

 interpolate {

 fill-level [2a 2b 2c 2d];

 drop-probability [p2a p2b p2c p2d];

 }

 }

Some useful qos monitoring commands follow below:

Show interfaces queue <interface_name> forwarding-class <class_name>

Show interfaces extensive details <interface_name>

5 Procket

The configuration presented applies to the following cards in the Procket 8801 platform

· POS OC-48 to whom Procket refers to as 4-PORT OC-48c POS SR. The encapsulation used is PPP.

· GE to whom Procket refers to as 10-PORT 1000BASE-SX

The System Release Version used is the 2.3.0.180-B and the Kernel Version used is the 2.3.0.1-P PowerPC
5.1 OC-48 and 1GE Configuration

!

qos is needed to enter the qos configuration mode

!

qos

!

The classifier is globally defined

!

 class class1_name

 dscp class1_dscp
 class class2_name
 dscp class2_dscp

!

The scheduler is defined and a service profile name is associated

!

 service-profile service-profile_name
 class class1_name

 class class2_name

 queuing-discipline dwrr (class1_name [X], class2_name [Y], default[1])

!

The scheduler is attached to the output interface by the mean of passing the service-profile_name to the “qos service” template. The default behaviour is that of applying it to the traffic leaving the interface.

!

!

interface output_interface_name

qos-service service-profile_name
!

As with Cisco, the max of the sum of X and Y present in the configuration above cannot be 100% as 1% is always there to host routing updates and network control traffic in general. Therefore (X+Y) <= 99%.

As regards the qos monitoring, useful commands follow below:

show qos class-profile [<name>] Shows the definition of a specific class or all

classes if no name is specified.

show qos red-profile [<name>] Shows the definition of a specific RED profile or

all RED profiles if no name is specified.

Show qos input-behavior [<name>] Shows the definition of a specific input behavior

or all input behaviors if no name is specified.

show qos output-behavior [<name>] Shows the definition of a specific output behavior

or all output behaviors if no name is specified.

show qos service-profile [<name>] Shows the definition of a specific service profile

or all service profiles if no name is specified.

show qos interface <name> Shows the name of the service that is configured

� This is not provided for Procket as we have not configured this feature.

