
TCP Congestion Control in Fast Long-Distance Networks

Technical Report DataTAG-2002-1, FP5/IST DataTAG Project
and Technical Report CALT-68-2398, California Institute of Technology, USA

July 10, 2002

Jean-Philippe Martin-Flatin
IT Division

CERN
1211 Geneva 23, Switzerland

E-mail: jp.martin-flatin@ieee.org

Sylvain Ravot
California Institute of Technology

c/o CERN
1211 Geneva 23, Switzerland

E-mail: sylvain@hep.caltech.edu
Abstract -- TCP congestion control is currently
based on Jacobson’s algorithms (slow-start and con-
gestion avoidance), devised back in 1988, with
improvements such as SACK and NewReno.
Although TCP has proved remarkably flexible thus
far and managed to adapt to vastly different types of
networks, we show in this paper that some of the
assumptions behind these algorithms are no longer
valid in today’s fast long-distance networks. Our
analysis is backed by empirical data collected over a
622 Mbit/s transoceanic link dedicated to Grid appli-
cations. We propose that the additive increase and
multiplicative decrease algorithms be changed for this
type of networks, and describe a new fairness princi-
ple.

I. INTRODUCTION

Data-intensive Grids (called Grids for short in this
paper) are distributed applications that span multiple
organizations and management domains and operate over
fast Wide-Area Networks (WANs). They are character-
ized by massive file transfers (up to several terabytes)
between geographically dispersed machines spread over
different countries, sometimes even different continents.
They assume that the network is transparent to the appli-
cation, just like standard distributed systems do over
Local-Area Networks (LANs). Grids enable organiza-
tions to share computing resources such as PC farms on
an ad hoc basis.

Grids are particularly relevant to Particle Physics,
because the amount of data produced by a single experi-
ment is so huge that all the computing power of a single
Research Institute or National Center may not suffice to
process it. In such cases, the data processing must be dis-
tributed worldwide among several organizations. CERN
is interested in Grids for processing the data that will be
generated by its future Large Hadron Collider.

Caltech and CERN are involved in a mesh of interna-

tional research programs that endeavor to put together
such Grids for the Particle Physics research community.
One critical aspect under study is the tuning of network
protocols and the development of new protocol imple-
mentations in order to maximize the bandwidth offered
by fast long-distance networks to Grids. To this end, a
fast transoceanic link between Geneva and Chicago was
provisioned and tested jointly by the two partners (see
Section II.A).

Because Grid tools and middleware are usually built on
top of the Transmission Control Protocol (TCP [16]), we
focused on the bandwidth offered by fast WANs to long-
lived TCP connections, and did not investigate alternate
transport protocols such as the User Datagram Protocol
(UDP [16]) or the Stream Control Transmission Protocol
(SCTP [17]).

While experimenting with massive file transfers, we
soon realized that the performance we were getting out of
our testbed was rather poor. After tracing back these
problems for some time and testing several end-hosts
with different Gigabit Ethernet cards, we convinced our-
selves that the problems lay in TCP, notably its conges-
tion control algorithms. In this paper, we describe these
problems, analyze them, and explain some of their
causes. We propose some solutions and raise questions
that still need to be answered.

The remainder of this paper is organized as follows. In
Section II, we describe our testbed and show evidence of
the performance problems experienced on our WAN link.
In Section III, we analyze these problems and justify
them theoretically. We define some metrics that highlight
some issues inherent in today’s TCP congestion control
algorithms. In Section IV, we present a new fairness prin-
ciple that leads us to more efficient algorithms for
increasing and decreasing the congestion window. Its
strengths and weaknesses are assessed. Finally, we inves-
tigate related work and present perspectives for future
work.

II. EXPERIMENTAL EVIDENCE OF PERFORMANCE
PROBLEMS

Fast (622 Mbit/s and above) long-distance networks
are considerably more sensitive to packet loss than
today’s standard networks. In this section, we demon-
strate this with measurements performed in real life.

A. Description of the testbed

CERN and Caltech worked jointly to provision and test
a 622 Mbit/s link between CERN, Geneva, Switzerland
and StarLight, an optical switching facility located in
Chicago, IL, USA. StarLight interconnects a number of
research networks in the USA, including Abilene
(Internet2). CERN has fast connections to GEANT, the
backbone used by most National Research and Education
Networks in Europe, and several other research institutes.

The layout of our testbed is depicted in Figure 1. At
both ends of our 622 Mbit/s WAN link, we have Cisco
7609 routers with Packet over SONET (PoS) interfaces.
(The equipment owned by our WAN provider is not rep-
resented here.) The end-hosts are PCs equipped with
Gigabit Ethernet cards. They are both connected directly
to the routers in order to limit the potentially adverse
effects (buffering delay, data corruption, etc.) of extra
equipment.

The end-host at CERN is a PC with a Pentium IV pro-
cessor clocked at 1.5 GHz. It runs Linux kernel 2.4.17,
has a 32-bit bus clocked at 33 MHz, and a SysKonnect
SK-9843 SX Gigabit Ethernet card. The end-host at Star-
Light is a dual-processor PC; both processors are Pen-
tium III’s clocked at 1 GHz. The rest is identical to
CERN’s end-host. Note that release 2.4.17 of the Linux
kernel implements both TCP NewReno [4] and TCP
SACK [10].

Although the theoretical limit of a 32-bit bus clocked at
33 MHz is 1056 Mbit/s, which is slightly above 1Gbit/s
(the maximum throughput that Gigabit Ethernet cards
can cope with), we discovered that, in practice, it “satu-
rates” at about 400 Mbit/s (two PCs connected back to
back). At the time of this writing, we are in the process of
upgrading our PCs to 64-bit buses clocked at 133 MHz.

B. Requirements

To date, it is difficult to characterize Grid-related traffic
patterns over fast long-distance networks, because the
research community still has little experience with this
new technology. The possibility for researchers to use
long-distance networks offering more than 100 Mbit/s to
a single TCP connection only recently became a reality
(e.g., see the Net100 project [11]).

Based on the discussions we had with Grid experts, we
expect to have three types of concurrent traffic on our
WAN link when it goes into production. First, we should
have a few massive file transfers (between one and 10) at
any point in time. These resource-hungry transfers are
based on tools such as GridFTP [5] and are likely to con-
sume all the bandwidth that is offered to them, even if we
later increase the link capacity. They rely on very-long
lived TCP connections, which typically last several
hours. The amount of data moved about by a single TCP
connection (be it single- or multi-stream) is counted in
terabytes. Second, we expect to have between dozens and
hundreds of long-lived TCP connections that transfer
gigabytes of data, usually last 5–10 minutes, and always
last less than an hour. The third type of traffic corre-
sponds to the standard use of a WAN link without Grids:
Web, e-mail, interactive connections via ssh, videocon-
ferences, small file transfers, etc. This background traffic
is expected to account for at most 5% of the network
capacity and can reasonably be considered negligible,
except that it can temporarily cause congestion. This traf-
fic includes many short-lived TCP connections and non-
TCP traffic.

In this paper, we focus on the first type of traffic. We
try to maximize the bandwidth offered by our fast long-
distance network to a few very long-lived TCP connec-
tions, bearing in mind that the other two classes of traffic
occasionally cause congestion and packet loss. Due to
space constraints, our study of the effects of multi-
streaming on TCP performance is not included here (see
Hacker and Athey [8] for a good study on this issue).

C. Results

1) Time to recover from a single loss

The data plotted in Figure 2 was gathered with a modi-
fied version of gensink [15] generating TCP traffic.
This home-grown tool offers functionality somewhat
similar to the better-known iperf [12]. One point is
plotted each time 10 MB of data have been transferred, as
opposed to every N milliseconds, hence the slight
smoothing of the curve.

Each drop of the throughput on Figure 2 is due to
packet loss. Sometimes we have a single loss, sometimesFigure 1: Setup of the testbed

Cisco
7609

Cisco
7609

GenevaChicago

PCPC

622 Mbit/s

1 Gbit/s 1 Gbit/s

several successive packets are lost. As expected, the
throughput is divided by two whenever a packet is lost,
due to Jacobson’s multiplicative decrease algorithm [6].

What was less expected is that losses do not occur at
the same value of the throughput; as a result, cycles all
have the same slope but they do not have the same
period. Although our PCs can cope with throughputs of
up to 400 Mbit/s, our measurements show that packets
are lost at lower throughput levels, between 140 and 280
Mbit/s. These lower values and their variation turned out
to be due to the poor quality of the link offered by our
WAN provider. We demonstrated this by generating UDP
and TCP traffic at different throughputs and checking the
error statistics reported by our SmartBits 2000 perfor-
mance analysis test system and the POS interfaces of our
Cisco routers. At 159 Mbit/s, the worse error rate that we
measured was 2.3 10-4, which is several orders of magni-
tude poorer than expected (see Section III.B). The prob-
lem may lie in a network device or an optical fiber of our
WAN provider.

Independent of these error rates, Figure 2 shows evi-
dence of the basic problem with TCP over fast long-dis-
tance networks: It takes too long (several minutes in our
testbed) to recover from packet loss. Intuitively, this
value should be in the order of milliseconds, or a few sec-
onds at most. We will come back to this in Section III.A.

2) Estimation of β
Let us define β as the payload divided by the number of

bits in the fiber. This ratio allows to go from a raw bit rate
(bits in the fiber) to an application-level throughput (use-
ful bits that make up the payload of TCP segments). It
allows end-users to estimate the time it takes to transfer a
certain amount of data over a WAN clocked at a given
speed. β takes into account the overhead caused by appli-
cation- and transport-layer retransmissions, the TCP or
UDP headers, TCP ACKs, the IP headers, the Ethernet
headers and footers, the Ethernet preambles, link-layer
CRCs, SONET/SDH overhead (4.44%), etc.

β varies with the size of the payload, i.e. with the

packet size. It also depends on the transport protocol, the
error rate, and the proportion of TCP and UDP traffic. In
the case of Grids, most of the traffic is due to massive file
transfers over TCP. If we make sure that applications
send data to the kernel in an efficient way, or that data is
buffered by the kernel, we can assume that packets are
completely filled. In other words, for Grids, we can rea-
sonably assume that the average payload of a TCP packet
(the average segment size) is approximately equal to the
Maximum Segment Size (MSS): 1,460 bytes. (The stan-
dard MTU for Gigabit Ethernet networks is 1,500 bytes.)

Figure 3 shows our measurements of β for different
packet sizes. Because we had no equipment to precisely
measure the bit rate on our WAN link, we saturated our
622 Mbit/s WAN link with UDP traffic. To do so, we
used a SmartBits box with two Gigabit Ethernet (GbE)
interfaces. The traffic reported by the Cisco 7609 on the
POS interface was 610 Mbit/s (with a 5% error window
due to the way measurements were performed), which
confirms that the link was indeed very close to saturation.

The traffic measured by the SmartBits box on the
receiving GbE interface was 93.8% of the traffic gener-
ated by the sending GbE interface. This value indicates
the payload of IP packets. For TCP traffic, we have a
header of 20 bytes, so βTCP is equal to:

(1)

provided that we have enough connections to properly
use the available bandwidth (see Section III.C). For UDP
traffic, we have a header of only 8 bytes, which yields:

(2)

For both βTCP and βUDP we have to also take into
account retransmissions due to buffer overflows and line
errors, application- or transport-level acknowledgments,
etc. These parameters depend on the network state and
vary dynamically. In this paper, we approximate β with a
value of 0.9 for Grids.Figure 2: Long recovery time of TCP

0

50

100

150

200

0 500 1000 1500

Time (s)

Th
ro

u
g

h
p

u
t

(M
b

it
/s

)

Figure 3: Estimation of β

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500

Segment size (Bytes)

β

βTCP 0.938
1480 20–

1480
------------------------⋅ 0.925= =

βUDP 0.938
1480 8–

1480
---------------------⋅ 0.933= =

III. IDENTIFICATION OF WHAT IS WRONG WITH TCP
OVER FAST LONG-DISTANCE NETWORKS

Faced with the problems described so far, we first tried
to understand whether these problems were general prob-
lems or artifacts due to our experiments. During this
exercise, we identified two causes of the high errors rates
we were getting (PCs with 32-bit buses and poor quality
of the WAN link).

Once we had convinced ourselves that the poor perfor-
mance of our massive file transfers were due to TCP, we
studied in detail how TCP SACK and TCP NewReno
(simply referred to as “TCP” hereafter) work. Our goal
was to work out whether this problem could be ascribed
to the way TCP operates. Our results were enlightening.
Rather simple calculations show that the characteristics
of fast long-distance networks are so different from
today’s and past “regular” networks that they make some
of TCP’s fundamental assumptions incompatible with
high throughput.

In this section, we give three reasons for TCP to per-
form poorly over fast long-distance networks.

A. Existing congestion control mechanisms are not
responsive enough

TCP is considerably more sensitive to packet loss in
fast WANs than in LANs or regular WANs. This is pri-
marily due to its congestion avoidance algorithm, based
on the Additive Increase Multiplicative Decrease
(AIMD) principle [6]. The effect of a single loss is disas-
trous in fast long-distance networks: A TCP connection
reduces its bandwidth use by half immediately after a
loss is detected (multiplicative decrease), but instead of
taking hundreds of milliseconds or at most a few seconds
to use all the available bandwidth again, it takes minutes
or hours (additive increase). Slow-start also has an effect
on the poor performance of TCP over fast WANs, but its
impact is lower than congestion avoidance: Packet loss is
detected more often by triplicate ACKs than by timeouts,
and TCP connections spend much more time in conges-
tion avoidance than in slow-start.

To quantify this phenomenon, let us define new metrics
that clearly show that there is a problem when we use fast
long-distance networks.

1) Responsiveness

Let us formalize the concept of responsiveness, which
is rather intuitive to end-users. How quickly do things go
back to normal after a TCP connection experiences
packet loss? We saw on Figure 2 that it takes a long time
in real life, but let us analyze it theoretically as well.

The following two equations give rather intuitive defi-
nitions of responsiveness:

(3)

(4)

The increment inc measures the additive increase of the
TCP congestion avoidance algorithm. As per RFC 2581
[1], it is equal to one MSS (Maximum Segment Size),
where MSS is equal to 1,460 bytes in general today
(Ethernet MTU), 536 bytes in the old days (RFC 1122,
p. 60), and 8,960 bytes if we use Gigabit Ethernet jumbo
frames (which have not been standardized yet). C is the
capacity of the network link. More precisely, it is the esti-
mated link capacity at the network bottleneck. In Section
IV.D, we will study how this capacity can be estimated.
The responsiveness ρ measures how quickly we go back
to using the network link at its full capacity after experi-
encing a packet loss (and thus halving our use of the net-
work). Finally, Ninc is the number of increments, i.e., the
number of times cwnd has to be increased before we use
the link at full capacity again.

Note that we do not assume in (3) and (4) that the win-
dow size always remains equal to one. What we measure
here is the time is takes to go back to normal, that is, to
use the same bandwidth as what we were using prior to
the packet loss. For a single TCP stream, this means
using the full capacity of the network link.

If we combine (3) and (4), we get:

(5)

Equation (5) assumes that we use consistent units for
all variables. In practice, however, C is expressed in raw
bits per second on the fiber, while inc is expressed in use-
ful bytes transferred in the payload of TCP packets. In
Section II.C, we defined β, the ratio that allows us to go
from a raw bit rate to an application-level throughput. If
we call Cb the capacity expressed in bit/s and incB the
increment expressed in bytes, (5) becomes:

which yields:

(6)

Similarly, the number of increments becomes:

(7)

Let us quantify this responsiveness for different types
of networks. In the cases analyzed next, the first two cor-
respond to typical LANs and WANs in 1988, when

ρ Ninc RTT⋅=

Ninc
C RTT⋅
2 inc⋅

-------------------=

ρ C RTT2⋅
2 inc⋅

---------------------=

ρ
β Cb RTT2⋅ ⋅

2 incB 8⋅ ⋅
--------------------------------=

ρ
β Cb RTT

2⋅ ⋅
16 incB⋅

--------------------------------=

Ninc

β Cb RTT⋅ ⋅
16 incB⋅

-----------------------------=

Jacobson devised his congestion control algorithms for
TCP [6]. The next two correspond to typical LANs and
WANs today. Cases 5 to 8 correspond to the different
types of WAN links that we envision between Geneva
and Chicago. The last two cases correspond to different
but equally interesting scenarios where RTT is very large
and C is very small: Sun-Earth and Mars-Earth commu-
nications.

Since the number of increments must be an integer, the
values of Ninc are rounded up to the nearest greater inte-
ger. For the sake of consistency, we assume that β is
equal to 0.9 in all cases (see Section II.C). In practice, its
value is smaller for spatial communications.

Case 1: typical LAN in 1988 (Ethernet)

C = 10 Mbit/s
RTT = [2 ms; 20 ms]
(20 ms is really the worst case; 2 ms is more typical)
increment = 1,460 bytes
then
number of increments = [1; 8]
responsiveness =~ [1.5 ms; 150 ms]
Responsiveness is good.

Case 2: typical WAN in 1988

C = 9.6 kbit/s
RTT = 40 ms (worst case)
increment = 1,460 bytes
then
number of increments = 1
responsiveness = 0.6 ms
Responsiveness is good.

Case 3: typical LAN today

C = 100 Mbit/s
RTT = 5 ms (worst case)
increment = 1,460 bytes
then
number of increments = 20
responsiveness = 96 ms
Responsiveness is good.

Case 4: typical WAN today

C = 2 Mbit/s
RTT = 40 ms (worst case)
increment = 1,460 bytes
then
number of increments = 4
responsiveness =~ 120 ms
Responsiveness is acceptable.

Case 5: old WAN link between CERN and StarTAP

C = 155 Mbit/s
RTT = 120 ms
increment = 1,460 bytes
then
number of increments =~ 720
responsiveness = 86 s
Responsiveness is poor.

Case 6: current WAN link between CERN and StarLight

C = 622 Mbit/s
RTT = 120 ms
increment = 1,460 bytes
then
number of increments =~ 2,900
responsiveness =~ 6 min
Responsiveness is poor. Note that the responsiveness

measured in our testbed is twice as large, due to a side
effect of delayed ACKs. Release 2.4.17 of the Linux ker-
nel implements delayed ACKs, that is, the destination
sends an ACK every second packet when it receives two
packets within 500 ms (as recommended by RFC 2581,
Section 4.2). When (i) the congestion window is large,
(ii) the mean inter-packet arrival time is largely below
500 ms, and (iii) many packets are sent in bursts, then all
packets are acknowledged with delayed ACKs (except
the last packet of the congestion window if the total num-
ber of packets in this window is odd). As a result, on
average, the number of ACKs sent by the destination is
only half the number of packets sent by the source.
Meanwhile, every time the kernel of the source receives
an ACK, it increases cwnd as follows (as per RFC 2581,
Section 3.1):

(8)

where SMSS is the MSS of the sender. Unfortunately,
this formula assumes that the source receives one ACK
per packet sent; in our case, we receive one ACK every
second packet sent. Because the source receives only half
of the ACKs expected by this formula, its congestion
window increases at only half the rate it is supposed to.
This explains why the experimental responsiveness
derived from Figure 2 is 12 minutes while the theoretical
responsiveness is only six minutes.

To avoid this side effect, we recommend that (8)
(which is called equation (2) in RFC 2581, Section 3.1)
be replaced with the following:

(9)

where NAB is the number of acknowledged bytes in the
ACK we just received. Without delayed ACKs, NAB is

cwndi 1+ cwndi
SMSS SMSS⋅

cwndi
----------------------------------+=

cwndi 1+ cwndi
SMSS NAB⋅

cwndi
-------------------------------+=

always equal to SMSS and (9) is equivalent to (8). If we
experience delayed ACKs from time to time, NAB oscil-
lates between SMSS and 2*SMSS. If we always have
delayed ACKs, NAB is always equal to 2*SMSS.

Case 7: future WAN link between CERN and StarLight
(2.5 Gbit/s scenario)

C = 2.5 Gbit/s
RTT = 120 ms
increment = [8,960 bytes; 1,460 bytes]
(the left value is for Gigabit Ethernet jumbo frames, the

right value is for standard frames)
then
number of increments =~ [1,900; 11,600]
responsiveness =~ [4 min; 23 min]
Responsiveness is poor with an MSS of 8,960 bytes,

and very poor with an MSS of 1,460 bytes.

Case 8: future WAN link between CERN and StarLight
(10 Gbit/s scenario)

C = 10 Gbit/s
RTT = 120 ms
increment = [8,960 bytes; 1,460 bytes]
then
number of increments =~ [7,500; 46,200]
responsiveness =~ [15 min; 1 h 30 min]
Responsiveness is very poor with an MSS of 8,960

bytes, and dreadful with an MSS of 1,460 bytes.

Case 9: Sun-Earth satellite communications

C = 10 bit/s
RTT = 1000 s
(The average Sun-Earth distance is 15 1010 m.)
increment = 1500 bytes
then
number of increments = 1
responsiveness =~ 6 min
Responsiveness is poor, but not as bad as for fast long-

distance networks.

Case 10: Mars-Earth interplanetary communications

C = 10 bit/s
RTT = [20 min; 50 min]
(The Mars-Earth distance varies more than the Earth-

Sun distance.)
increment = 1500 bytes
then
number of increments = [1; 2]
responsiveness =~ [9 min; 1 h]
Responsiveness is as bad as for fast long-distance net-

works.
In short, the responsiveness defined in (6) allows us to

immediately show and quantify that there is a problem

specific to fast long-distance networks. Neither the LANs
and WANs of 1988, nor those that are typical today,
exhibit the poor responsiveness that affects fast long-dis-
tance networks. Even Earth-Sun satellite communica-
tions are not as bad (they have other problems, however,
due to high loss rates).

Jacobson’s congestion avoidance algorithm, and all its
variants implemented in TCP Tahoe, Reno, New Reno,
SACK, and Vegas, make the implicit assumption that the
responsiveness should remain low, below a few seconds.
Thus, the number of increments is also assumed to
remain low. This implicit assumption, which has been
valid for all the networks used so far, is no longer valid
for today’s fast long-distance networks, that is, for the
networks envisioned for Grids in the near future. Jacob-
son’s algorithm needs to be changed for the type of net-
works of interest to us.

2) Number of packets in transit

If we blast data at full rate into the pipe (i.e., if cwnd is
large enough that we can we use the network link at full
capacity), the maximum number of bytes in transit is
given by:

(10)

where C is the network link capacity and β is the ratio
determined in Section II.C.

NBTmax is the maximum amount of data already sent
into the pipe, but for which the sender has not yet
received an acknowledgment from the receiver. It corre-
sponds to the flight size defined in RFC 2581.

NBTmax is often referred to as the bandwidth delay
product, assuming that β is equal to 1. In our view, the
term bandwidth is a bit of a misnomer here, because it
usually refers to the proportion of the capacity that is
actually used, and is thus dynamic. The capacity of a
link, conversely, is the upper bound of the bandwidth and
is static. The two quantities are equal if, and only if, the
network link is traversed by a single stream of data that
takes up all the network resources—a very rare event
indeed.

Because routers and switches have buffer limits
expressed in packets rather than bytes, we define a more
practical metric, the maximum number of packets in tran-
sit:

(11)

where ASS is the average segment size for TCP traffic.
As mentioned already, in the case of Grids, packets are
assumed to be fully filled TCP segments, so ASS = MSS
= 1,460 bytes.

NBTmax
β C RTT⋅ ⋅

8
---------------------------=

NPTmax
β C RTT⋅ ⋅

8 ASS⋅
---------------------------=

Case 1: typical LAN in 1988 (Ethernet)

C = 10 Mbit/s
RTT = 2 ms
then
NBTmax = 2250
NPTmax = 2
At most, we have two packets in transit in such a net-

work. Buffers are unlikely to fill up frequently on the
path between the source and the destination. The maxi-
mum size of cwnd is very small.

Case 2: typical WAN in 1988

C = 9.6 kbit/s
RTT = 40 ms (worst-case scenario)
then
NBTmax = 44
NPTmax = 1
Such networks are so slow that packet N has already

been acknowledged by the destination and the ACK has
already reached the source by the time the source is ready
to send packet (N+1). Once again, the maximum value of
cwnd remains small.

Case 3: current WAN link between CERN and StarLight

C = 622 Mbit/s
RTT = 120 ms
then
NBTmax =~ 8,400,000
NPTmax =~ 5,750
We have already sent 5,750 packets when we receive a

duplicate ACK, and 11,500 packets when we receive at
last a triplicate ACK indicating that a packet was lost. As
today’s routers and level-3 switches rarely have queues
larger than 200 packets, and as the number of hops
between any two end-hosts rarely exceeds 40 hops in the
Internet today, the network devices cannot buffer more
than 8,000 packets. With 11,500 packets in transit, we
can thus fill up the queues of all level-3 equipment (rout-
ers and switches) along the path. When the destination
asks the source to reduce its cwnd, or when it reports that
a packet was lost, it is already too late for the source to
adjust to the new situation. Responsiveness is dreadful!

Case 4: future WAN link between CERN and StarLight
(2.5 Gbit/s scenario)

C = 2.5 Gbit/s
RTT = 120 ms
then
NBTmax =~ 34,000,000
NPTmax =~ 23,000
This time, we have already sent 23,000 packets when

we receive a duplicate ACK, and 46,000 packets when
we receive at last a triplicate ACK indicating that a

packet was lost. The situation is even worse than in
case 3.

B. At fast bit rates, line errors are no longer negligible

The second reason for TCP to perform poorly over fast
long-distance networks is that packet loss is always inter-
preted as congestion by TCP. The implicit assumption
here is that packet loss due to line errors is negligible
compared to buffer overflows. Yet again, this assumption
falls apart in the case of fast long-distance networks—
and even when RTT is small.

To date, standard bit error rates for optical fibers range
from 10-12 to 10-14. If we take into account the errors due
to network equipment (which does not include buffer
overflows), these values become 10-9 to 10-11. These
rates may seem extremely low at first sight. Still, with
fast networks, these bit error rates correspond to:

10-9. 622 Mbit/s = 0.6 errors/s
10-11. 622 Mbit/s = 0.006 errors/s

10-9. 2.5 Gbit/s = 2.5 errors/s
10-11. 2.5 Gbit/s = 0.025 errors/s = 1.5 errors/min

10-9 errors/bit . 10 Gbit/s = 10 errors/s
10-11 errors/bit . 10 Gbit/s = 0.1 errors/s = 6 errors/min

With SONET and SDH, error correcting codes are able
to mask some of these errors (e.g., by using Forward
Error Correction). Supposing that only 10% of line errors
are not corrected, which is very optimistic, we still have:

10-9. 622 Mbit/s . 10% =~ 1 error every 17 s
10-11. 622 Mbit/s . 10% =~ 1 error every 28 min

10-9. 2.5 Gbit/s . 10% =~ 1 error every 4 s
10-11. 2.5 Gbit/s . 10% =~ 1 error every 7 min

10-9 errors/bit . 10 Gbit/s . 10% = 1 error/s
10-11 errors/bit . 10 Gbit/s . 10% =~ 1 error every 2 min

Compared to the time it takes congestion avoidance to
make the throughput go back to its value when conges-
tion was detected (responsiveness of six minutes for a
622 Mbit/s link, 23 minutes for a 2.5 Gbit/s link, and
1 hour 32 minutes for a 10 Gbit/s link), these error rates
are so high that we never go back to this value, except
when we use a 622 Mbit/s with a 10-11 bit error rate. At
high bit rates, line errors are no longer negligible.

The first consequence of this is that the loss of a single,
isolated TCP packet should not be interpreted as conges-
tion by TCP. Congestion requires the loss of at least two

successive packets. An acceptable approximation of this
is the following rule:

TCP congestion requires the loss of at least two pack-
ets in the same congestion window. The loss of a single
packet should be interpreted as a line error and should
not trigger the multiplicative decrease of the used band-
width.

Note that very lossy communications (e.g., over wire-
less or interplanetary networks) may require even more
drastic definitions [14]. This one assumes that the bit
error rate remains reasonably small.

Another consequence is that TCP should behave differ-
ently with networks operating at different speeds. The
current versions of TCP (New Reno and SACK) are well
suited to today’s standard WANs (up to 155 Mbit/s), but
are not to tomorrow’s fast WANs (2.5 Gbit/s and higher).

C. With TCP, we cannot use the link at full capacity

The people who try to break the world record of mega
file transfers over very long distances all come across the
same problem: A single TCP stream cannot use the full
capacity of a network link because of the time it takes
TCP to recover from a single loss. This limitation is
inherent in the design of all flavors of TCP to date:
Tahoe, Reno, NewReno, SACK, Vegas, etc.

Let us suppose that we have a single TCP stream going
through a network link. Whether we increase one MSS at
a time or several MSSes at a time, the overall used band-
width remains unchanged: 75% of link capacity. This is
due to the AIMD algorithms. Fast long-distance links are
expensive, and we should not lose 25% of the capacity
just for the sake of using a standard transport protocol.

This problem can affect Grids. As mentioned earlier,
we expect to have between one and 10 massive transfers
at any time. Outside office hours, Grid-dedicated links
may not be traversed by any other kinds of traffic (see the
three types defined in Section II.B). When this is the
case, the total bandwidth (TBW) used by N concurrent
TCP connections is given by:

(12)

With N=2, we use 87.5% of the capacity. With N=3, we
use 93.75%. With N=5, we use 96.9%. So, if we have
only a few concurrent mega file transfers, this effect is
important. Otherwise, it is negligible. In particular, this
issue becomes irrelevant in backbones, where we usually
have between 103 and 106 concurrent TCP connections.

IV. TOWARD A NEW FAIRNESS PRINCIPLE

FOR LONG-LIVED CONNECTIONS

In the previous section, we have demonstrated that
losses cause serious problems to TCP when RTT is large
and the link capacity is high. In this section, we propose a
new fairness principle and new algorithms for increasing
and decreasing the bandwidth used by TCP connections,
thereby increasing the overall use of the network link
capacity.

A. New assumption

Based on our experience with many kinds of networks
(LANs or WANs, slow or fast, short or long distance), we
believe that we can make the following assumption: On
WAN links, the available bandwidth remains almost con-
stant over extended periods of time, roughly between
10 minutes and one hour. There are exceptions to this
empirical rule, but we have verified it in many different
environments. It is particularly true in networks underly-
ing Grids, where we expect to have between one and ten
massive file transfers that take up most of the available
bandwidth. In other networks, it is usually true during
slack hours, and sometimes also during peak hours.

This hypothesis allows us to make the following
approximation: For long-lived TCP connections, the
available bandwidth (ABW) is constant by slices (see
Figure 4). ABWi denotes the available bandwidth during
phase i. Building on this simplification, we can now
change the algorithms used for increasing and decreasing
the bandwidth used by a TCP connection. Instead of
decreasing very fast and increasing very slowly (AIMD)
with no idea of the level at which we will encounter con-
gestion, we can try to reach the stationary level for
phase i fairly quickly and to keep the oscillations of the
used bandwidth in the vicinity of ABWi. The challenges
now are to work out how we detect a phase change and to
find out the new ABWi when we enter phase i.

TBW 1
1

2N 1+
------------– 

  C⋅=

Figure 4: The available bandwidth is constant by slices

time

ABW

phase 2

phase 3

phase 1

B. New fairness principle

TCP connections are greedy by nature: They always try
to use more bandwidth until a packet is lost. But when a
loss does occur, TCP connections become very conserva-
tive: They drastically reduce their throughput and then
start increasing it again very slowly. The problem with
this behavior is that losses have a very adverse effect on
the performance of data transfers and on the overall use
of bandwidth in fast long-distance networks. How can we
alleviate these problems for Grids?

Losses due to congestion are rarely one-off events: they
usually come in bursts. When a new TCP connection
begins sending data into an end-to-end virtual pipe
(socket), most of the TCP connections generating cross-
traffic through the bottleneck of this pipe will soon lose
packets due to buffer overflows. As a result, most of
these TCP connections will be aware that there is a new-
comer. Based on this remark, we can improve the
increase and decrease algorithms used by TCP during
congestion avoidance.

Assume I am an existing TCP connection that detects
congestion. Instead of dividing my throughput by two
(that is, I give up all that is needed by the newcomer
while the other TCP connections make no effort to
reduce their share), I assume that (i) all existing TCP
connections use the same bandwidth as me and (ii) every-
one will make the same effort to reduce its bandwidth
use. Both assumptions are fair, insofar as no single TCP
connection is favored over others. So, instead of reducing
my own use of the network by 50%, I should reduce it by
ABWi - ABWi+1 where ABWi+1 is defined by:

(13)

C is the estimated link capacity and ABWi is the avail-
able bandwidth during phase i (see Figure 4). C remains
constant “forever” (at the timescale of interest to us)
while ABWi remains constant over long periods of time
(typically, for 10 minutes to one hour).

Since ABWi is a fraction of the network link capacity,
we have:

(14)

Combining (13) and (14) yields the following when we
decrease the bandwidth:

(15)

The difference between ABWi and ABWi+1 is then:

(16)

This defines our new decrease algorithm, referred to as
MFR on Figure 5. Equation (16) improves on Jacobson’s
decrease algorithm (called J on Figure 5), which is given
by:

(17)

If we normalize the bandwidth, (16) and (17) become:

(18)

(19)

The two curves given by (18) and (19) are depicted in
Figure 5. For instance, if αi = 5%, then αi+1 = 4.76%
after a single loss with our decrease algorithm, instead of
2.5% with Jacobson’s. With a capacity of 622 Mbit/s, we
save 14 Mbit/s. If αi = 20%, then αi+1 = 16.7% with our
decrease algorithm instead of 10% with Jacobson’s. With
a 622 Mbit/s link, we save 41 Mbit/s, which is signifi-
cant! The only cases when our decrease algorithm
behaves like Jacobson’s is when we have a single TCP
stream or when we have infinitely many. If αi = 100%,
then αi+1 = 50% after we experience a packet loss.

Figure 5 clearly shows that our decrease algorithm out-
performs Jacobson’s for fast long-distance networks. We
decrease the throughput less than Jacobson when a loss
occurs, so it takes less time to go back to ABWi when we
increase again.

Note that αi is not expected to be very small in the case
of Grids. As mentioned earlier, we do not expect to have
millions of concurrent, bandwidth-hungry Grid applica-
tions on a single link.

C
ABWi

C
ABWi 1+
--------------------- 1–=

i α i 0 α i 1≤ ≤() ABWi α i C⋅=()∧,∃,∀

α i 1+

α i

1 α i+
--------------=

ABWi ABWi 1+–
α i

2
C⋅

1 α i+
--------------=

ABWi
J

ABWi 1+
J–

ABWi
J

2

α i C⋅
2

-------------= =

ABWi ABWi 1+–

C

α i
2

1 α i+
--------------=

ABWi
J

ABWi 1+
J–

C

α i

2
-----=

Figure 5: Two multiplicative decrease algorithms

i+1

0

0.1

0.2

0.3

0.4

0.5

0 0.25 0.5 0.75 1

0

0.1

0.2

0.3

0.4

0.5

0 0.25 0.5 0.75 1

(ABW - ABW) / Ci

ABW / C
i

J

MFR

i+1

C. New algorithm for increasing cwnd

Congestion is a way for a new TCP connection to sig-
nal its arrival to many (sometimes all) of the active TCP
connections traversing the bottleneck of its path. Unfor-
tunately, there is no signaling mechanism for a TCP con-
nection to inform the others that it is about to be torn
down. Thus we cannot devise a simple scheme such as:

(20)

Instead, we propose to replace Jacobson’s additive
increase algorithm with a slightly more complex, yet
more efficient algorithm. The bottom line is to use binary
search until the increment size goes down to that of
Jacobson’s additive increase algorithm (i.e., one MSS).
Afterward, we switch to the standard additive increase
algorithm.

Let us present the details of our algorithm, which can
be decomposed into five states.

State1: packet loss, same phase

The bottleneck of the link has just experienced conges-
tion. We need to determine whether this phenomenon is
transient or permanent. First, we suppose it is transient.
We reduce the bandwidth used by the connection as
defined in (18). Next, through binary search, we increase
the bandwidth up to its previous stable level: ABWi (see
Figure 6.). If we successfully reach ABWi without expe-
riencing new packet loss, we are still in phase i and
should move to state 3. Otherwise, if we experience at
least two losses within the same congestion window, we
should conclude that we have just gone from phase i to
phase i+1 and move on to state 2.

State2: packet loss, new phase

A new TCP connection traverses the network bottle-
neck, which causes congestion. We need to find a new
equilibrium at a value ABWi+1 that is less than ABWi.
The new ABWi+1 is worked out via a learning process

depicted in Figure 7. During this process, we use binary
search both to increase and decrease the bandwidth use of
the TCP connection. We decrease it whenever we detect a
loss, and we increase it otherwise. This technique allows
us to reach the new ABWi+1 very quickly.

At this stage, we have reached a new stationary mode
and move on to state 3.

State3: no packet loss, no timeout

Once we enter this mode, we start a new timer called
the TCP greedy timer. The value of this timer remains to
be determined empirically, but we expect it to be com-
prised between 10 minutes and one hour. Our TCP con-
nection keeps sending data at the rate ABWi.

If we experience an isolated packet loss, we should not
do anything. As explained in Section III.B, this loss may
equally be due to congestion or line errors, and there is
no reason to alter cwnd or to reduce the bandwidth use of
the TCP connection in the presence of line errors.

If we detect N packet losses in the same congestion
window (N remains to be determined empirically, but we
expect to have 2 < N < 10), we interpret these repeated
losses as indicative of real congestion. We then move on
to state 1.

If the TCP greedy timer goes off, we move on to
state 4.

State4: no packet loss, timeout

We have been sending data at ABWi for a long time,
without experiencing any congestion. It is now time to
investigate whether we could enter a new phase where
ABWi+1 is larger than the current ABWi. Once the TCP
greedy timer goes off, we start increasing again the band-
width used by our TCP connection. This time, we could
adopt the increase algorithm defined in (20). Alterna-
tively, we could use Jacobson’s linear additive increase
(one MSS per RTT), which is less aggressive. We will
soon experiment with these different algorithms.

As in state 3, we do nothing special if we face an iso-
lated loss. In case of real congestion, we move to state 1.

C
ABWi

C
ABWi 1+
--------------------- 1+=

Figure 6: Binary search, same phase

time

ABW

two losses occur in the same cwnd

Figure 7: Binary search, new phase

time

ABW

two losses occur in the same cwnd

State5: bootstrap

When we create a new TCP connection, the seed value
for ABW0 should be the link capacity: C. We then move
on to state 2.

D. Estimation of the link capacity

Estimating the link capacity of a WAN link—or, to be
precise, the capacity of the bottleneck of a multi-hop
WAN link—is renowned to be difficult.

One way is to use tools that temporarily flood the link
(usually with UDP traffic) and derive the capacity by
making a statistical analysis of the inter-packet arrival
times at the sender (ACKs) or receiver (data). Examples
of such tools include udpmon [9] and pathload [7].

Another way is to define a new ICMP message that all
level-3 network devices (routers and switches) along the
path must answer. Each ICMP reply reports the capacity
of the inbound interface from which the ICMP message
was received. By taking the lowest of these capacities,
the end-host knows precisely the capacity of the bottle-
neck of the WAN link. In the presence of asymmetric
routes, this discovery process must take place in both
directions. The advantage of this method is that it is accu-
rate. The main disadvantage is that it requires a new
ICMP message to be supported by all routers and level-3
switches, which poses obvious deployment problems.
Whether the market would adopt such a scheme remains
to be seen. Another disadvantage is that it enables a new
kind of Denial of Service (DoS) attack. A third disadvan-
tage is that, if some of the level-3 devices do not support
this new ICMP message, the lowest value among the
advertised capacities may not be that of the bottleneck.

A third way of estimating the link capacity is to probe
the network with a series of packets carrying real payload
at the beginning of the lifetime of the TCP or UDP
socket. As in the first solution, a statistical analysis of the
inter-packet arrival times can indicate the value of the
link capacity. The main advantage of this method is that it
is performed while transferring useful data. The main dis-
advantage is that the precision of the estimation of the
capacity is usually very low, which explains why people
usually resort to the first solution.

In all cases, the value of the estimated capacity can be
cached—e.g., it can be stored in a configuration file and
read in next time we initiate a long-lived TCP connection
to the same destination. This caching is particularly rele-
vant to Grids, as the topology of the underlying network
often remains fairly static over time.

E. Weaknesses of our new algorithms

The reliance of our new increase and decrease algo-
rithms on the knowledge (or estimation) of the link
capacity is both a strength and a weakness. It is a strength
because it enables us to use less conservative algorithms
than AIMD, and thus to better use the available band-
width of expensive fast long-distance links.

It is also a weakness. First, the estimation of the capac-
ity of a WAN link is always approximate, and the accu-
racy with which we estimate C is usually unknown.
Second, estimating the capacity takes time. In theory, we
could consider using our new increase and decrease algo-
rithms for all sorts of TCP connections, not simply for
long-lived ones. But for short-lived TCP connections, the
time it takes to estimate the capacity may exceed the life-
time of the connection, which is not acceptable—unless
we work out the capacity once and reuse this knowledge
many times for different TCP connections. Third, routes
change in real-life networks. Thus, the capacity calcu-
lated by the sender may not correspond to the capacity
actually experimented by the TCP connection during its
entire lifetime. If we cache the results of previous capac-
ity estimations, it is not clear what the expiry time of the
cache entries should be.

In short, there are several ways to estimate the capacity
of a WAN link, but they all present some form of bias.
This issue is still very much open to research. Before it is
solved, the reliance on the knowledge of the link capacity
is a weakness of our increase and decrease algorithms.

V. RELATED WORK

Our work is not the first to question the versatilely and
suitability of TCP for all kinds of networks. Several
research teams have already described the performance
problems experienced by satellite or interplanetary com-
munications (e.g., the former IETF TCP over Satellite
Working Group). In these cases, RTT is very large, but
unlike the networks of interest to us, error rates are high
and the network link capacity is small.

But fast long-distance networks have only recently
become available to network researchers, and few papers
specific to this type of networks have been published so
far. Most of them are purely based on simulations, and
few compare theoretical results with real measurements.
Floyd recently issued an Internet Draft that gives a lot of
insight for future research [3]. Low et al. proposed a new
TCP congestion control mechanism with scalable stabil-
ity [13]. Balakrishnan et al. investigated alternatives to
TCP that do not react as drastically to a single packet loss
[2].

VI. CONCLUSION

In fast long-distance networks, TCP is too sensitive to
packet loss and takes too much time to recover from such
losses. In addition, line errors occurring with a reason-
able probability are mistakenly interpreted as congestion
by TCP. In this paper, we have shown experimental evi-
dence of these problems, analyzed them, and defined
metrics that highlight these problems in such networks.
We specified a new fairness principle and described new
algorithms for increasing and decreasing the bandwidth
used by long-lived TCP connections in Grids. We also
justified why these algorithms should outperform Jacob-
son’s. We are currently implementing them in Linux. Our
modified version of TCP is known as TCP Grid.

In the future, we want to study the effects of buffering
and shaping. It would also be useful to systematically
investigate whether a single ubiquitous TCP for all kinds
of networks is still possible for future networks, or
whether it is a vision of the past. In our view, different
networks with vastly different characteristics (e.g., local-
area, fast long-distance, and interplanetary networks)
should rely on different algorithms for congestion con-
trol. This standpoint poses a number of interesting chal-
lenges. For instance, how can we determine
automatically the kind of networks that a given applica-
tion needs to traverse? And how is fairness affected when
we alter the TCP congestion avoidance algorithms?

ACKNOWLEDGMENTS

The transatlantic link used for conducting this research
is funded by the US Line Consortium (USLIC), which is
financed by DoE via Caltech (grant DE-FG03-92-
ER40701), NSF (grant ANI 9730202), CERN, Canadian
HEP, IN2P3 in France, and WHO in Switzerland.
J.P. Martin-Flatin is funded by the IST Program of the
European Union (grant IST-2001-32459) via the
DataTAG project. The authors would like to thank Har-
vey Newman and Olivier Martin for their feedback on
this paper, and the network operations staff at StarLight
and CERN for their help while the 622 Mbit/s link was
provisioned and tested.

REFERENCES

[1] M. Allman, V. Paxson, and W. Stevens (Eds.),
“RFC 2581: TCP Congestion Control”, IETF, April
1999.

[2] D. Bansal, H. Balakrishnan, S. Floyd, and
S. Shenker, “Dynamic Behavior of Slowly-Respon-
sive Congestion Control Algorithms”. In Proc. SIG-
COMM 2001, ACM Computer Communication
Review, Vol. 31, No. 4, August 2001.

[3] S. Floyd. “HighSpeed TCP for Large Congestion
Windows”. Internet Draft <draft-floyd-tcp-high-
speed-00.txt>, work in progress, June 2002.

[4] S. Floyd and T. Henderson, “RFC 2582: The Ne-
wReno Modification to TCP's Fast Recovery Algo-
rithm”, IETF, April 1999.

[5] Globus Project. “The GridFTP Protocol and Soft-
ware”. Available at <http://www.globus.org/data-
grid/gridftp.html>.

[6] V. Jacobson and M.J. Karels. “Congestion Avoid-
ance and Control”, November 1988. This technical
report is a slightly revised version of: V. Jacobson,
“Congestion Avoidance and Control”. In Proc. SIG-
COMM 1998, ACM Computer Communication Re-
view, Vol. 18, No. 4, August 1988.

[7] M. Jain and C. Dovrolis, “End-to-End Available
Bandwidth: Measurement Methodology, Dynamics,
and Relation with TCP Throughput”. In Proc. SIG-
COMM 2002, ACM Computer Communication Re-
view, Vol. 32, No. 4, August 2002.

[8] T.J. Hacker and B.D. Athey, “The End-to-End Per-
formance Effects of Parallel TCP Sockets on a
Lossy Wide-Area Network”. In Proc. 16th IEEE-
CS/ACM International Parallel and Distributed
Processing Symposium (IPDPS) 2001.

[9] R. Hugues-Jones. udpmon: UDP Monitoring Tool.
Home page available at <http://datagrid.in2p3.fr/
cgi-bin/cvsweb.cgi/network/udpmon/>.

[10] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow,
“RFC 2018: TCP Selective Acknowledgment Op-
tions”, IETF, October 1996.

[11] Net100 Project. Home page available at
<www.net100.org>.

[12] NLANR. Iperf version 1.6. Available at <http://
dast.nlanr.net/Projects/Iperf/>.

[13] F. Paganini, S.H. Low, Z. Wang, S. Athuraliya, and
J.C. Doyle, “A new TCP congestion control with
empty queues and scalable stability”, submitted for
publication, 2002.

[14] K. Pentikousis, “Can TCP be the transport protocol
of the 21st century?”, ACM Crossroads, Vol. 7,
No. 2, Winter 2000.

[15] J. Sørensen. gensink. Available at: <http://
jes.home.cern.ch/jes/gensink/>.

[16] W.R. Stevens. “TCP/IP Illustrated, Volume 1: The
Protocols”, Addison-Wesley, 1996.

[17] R. Stewart, Q. Xie, K. Morneault, C. Sharp,
H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla,
L. Zhang, V. Paxson (Eds.). “RFC 2960: Stream
Control Transmission Protocol”, IETF, October
2000.

	I. Introduction
	II. Experimental Evidence of Performance Problems
	A. Description of the testbed
	B. Requirements
	C. Results
	1) Time to recover from a single loss
	2) Estimation of b

	III. Identification of what is wrong with TCP over fast long-distance networks
	A. Existing congestion control mechanisms are not responsive enough
	1) Responsiveness
	2) Number of packets in transit

	B. At fast bit rates, line errors are no longer negligible
	C. With TCP, we cannot use the link at full capacity

	IV. Toward a new fairness principle for long-lived connections
	A. New assumption
	B. New fairness principle
	C. New algorithm for increasing cwnd
	D. Estimation of the link capacity
	E. Weaknesses of our new algorithms

	V. Related Work
	VI. Conclusion
	Acknowledgments
	References

